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Abstract - Machine learning (ML) is one of the key drivers 

for a Self-organizing 5G Network (SONs), and it greatly 

improves Operational and Maintenance (OAM) activities 

such as Software/Hardware upgrades, Key Performance 

Indicator Monitoring, etc. This Case study paper specifically 

reviews the Computational problems which can be 

addressed by leveraging Machine learning techniques in a 

MIMO capable 5G Standalone network. 
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I. INTRODUCTION 

5G stands for the Firth Generation of the wireless 

cellular standards defined by the third-generation partnership 

program (3GPP) organization, establishing the industry 

standards for wireless cellular communication. 5G can 

deliver ultra-high data rates in the volume of Gigabits per 

second (Gbps) when compared to 4G LTE. The network 

latency and efficiency are greatly improved, making 5G the 

next big technology that needs to be adopted. The research's 

main aim is to review the advantages of using machine 

learning (ML) in 5G standalone MIMO capable networks as 

the intentions of a 5G network revere demands of phrases of 

data-rate, reliability, latency, or efficiency with which mobile 

operators shall be in a position in imitation of revere whole 

of these requirements using shared network infrastructure's 

resources. 

II. CASE STUDY ON ISSUES 

5G cellular networks are known as key emerging 

services that would form a foundational basis for future 

network connections. However, the emergence of new 

services is not easy and obstructed by challenges such as 

flexibility, dynamism, cost-effectiveness, and intelligent 

solutions that restrict its implementation on a large scale 

basis.  

 

Valente KP, Imran MA, Onireti O, Souza RD (2017) 

examined several challenges such as UDSC issues are faced 

while including advanced technologies such as ML in 5G 

applications. UDSC is associated with the collection of large 

volumes of management data that creates issues in managing 

network configuration and data complexity. Moreover, there 

is the creation of interference between prevailing pico, femto, 

and macrocells, creating challenges in 5G. Hetnets also 

create issues in the small and macro cells that disrupt the 

signals used by the users. As a result, there is a disruption in 

the signal-to-interference-plus-noise ratio (SINR) that 

adversely impacts network performance. Issues related to 

cost, insufficient control, and backhaul in UDSC application 

also create an issue in the adoption of ML in 5G. 

  

Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, 

Soong AC, Zhang JC (2014) analyzed that RAT selection 

challenges are also faced while incorporating 5G Hetnet into 

devices. Most of the electronic equipment and devices 

manufactured now a day support multiple RAT environments 

like 3G, 4G/LTE, Wi-Fi, Bluetooth, and potential 5G 

technologies. However, there is a requirement to adequately 

select intelligent RATs selection to provide an optimized 

experience to the users. Different RAT applications require 

maintaining different protocols, bandwidths, and frequencies, 

often creating complications in streamlining the single 

device. It impacts the performance of the device and 

degrades the capacity of the device to low levels. 

 

Jiang C, Zhang H, Ren Y, Han Z, Chen K-C, Hanzo 

L (2017) analyzed that Massive MIMO challenges are faced 

while including ML with 5G. It includes pilot 

communication, architectural design, and full-dimension 

MIMO that hinder advanced technologies in the 5G. While 

considering pilot contamination, it includes issues related to 

pilot sequencing that is generally used to analyze the same 

cell's channel values. As a result, the same sequence can be 

reused by other users in a different cell. However, reusing 
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leads to pilot contamination and disturbs the orthogonal 

uplink pilot sequences. It deteriorates the working of the 

channel, and it could not detect the cell estimates adequately. 

It results in the creation of a contaminated cell known as 

Channel State Information (CSI). 

Additionally, pilot communication increases the volume 

of antennas, which causes designing problems in massive-

MIMO. Sultan K, Ali H, Zhang Z (2018) examined the 

architectural design associated with MIMO design and its 

application across antennas. Massive-MIMOs are supported 

with powerful antennas that have several power amplifiers. 

In this design, the several low amplifiers must be connected 

in an integrated way to map the servers between the 

antennas. However, the entire setting of the network causes 

huge installation costs and limits advanced technology in 5G.  

 

Alnoman A, Anpalagan A (2017) analyzed that full-

dimension MIMO is associated with cellular networking 

based on 2D directional antennas. It is mainly attached in the 

form of the horizontal plane that is controlled by beam 

pattern radiation. This arrangement restricts the antennas' 

volume and uses only the azimuth angle dimension for 

networking and establishing connections. Thus, MIMO's use 

gets restricted and could be improved by adding a vertical 

plane to the dimension of an elevated angle. This concept is 

known as 3D MIMO, which helps increase the efficacy of 

the 5G network. Nadeem Q-U-A, Kammoun A, Alouini M-S 

(2018) examined that FD-MIMO is related to the issue faced 

while implementing and estimating the channel performance. 

As a result, there is the creation of issues related to azimuth 

and elevation beamforming due to many channels. 

  

Wei L, Hu RQ, Qian Y, Wu G (2014) examined that 

OFDM challenges impact the implementation of ML in the 

5G network system. There are several access applications 

such as FBMC and GFDM that create configuration and 

implementation issues. On the other hand, D2D challenges 

are faced while detecting proximity and integrating networks. 

As a result, it creates issues in the secure transfer of data and 

deteriorates the network coding scheme.  Therefore, self-

interference depreciation is to be included to enhance 

throughput and multi-mode selection procedure. Ma Z, 

Zhang Z, Ding Z, Fan P, Li H (2015) examined that CRN 

challenges create interferences between primary and 

secondary users that increase the risks of attacks and impacts 

the frequency sharing capacity of the networks. Additionally, 

SDN and NFV challenges are also faced when incorporating 

NFV with 5G network service providers. The 5G network 

service providers mainly use NFV to perform decoupling 

functions.  

 

It is mainly associated with building flexible networks in 

certain hardware components. However, such 

implementation of NFV with 5G creates issues related to 

performance management and evaluation and significantly 

limits its application. 

  

MacCartney GR, Zhang J, Nie S, Rappaport TS 

(2013) examined that high path loss challenges create issues 

related to augmenting in mm-waves' transmission 

frequencies that lead to loss of omni-directional path as it 

was higher than the microwave bands. An antenna array is a 

technique that is used to attain mm-wave communication. 

However, the antenna array technique is under research 

concerning the application in a 5G mm-wave network. 

Antenna arrays are based on beam forming that helps to 

establish mm-wave communication and overcome the losses. 

On the other hand, in a narrow beam, the rays are generally 

integrated that produce low spectrum overlap conditions and 

bring improvements in QoS. However, the major issue with 

the narrow beam application is that it increases sensitivity 

with movement that creates high processing complexity. 

 

Hossain E, Hasan M (2015) analyzed that Full-duplex 

(FD) communication challenges are faced while integrating 

advanced technologies with 5G networking. FD 

communication is based on self-interference (SI) mitigation 

that facilitates FD transmission by using SI mechanisms. 

However, in this application, the interference between 

various BSs is high, which causes loss of path and 

shadowing issues. As a result, there is improper power 

allocation management and a lack of synchronization 

between FD communication modes. Valente KP, Imran MA, 

Onireti O, Souza RD (2017) examined E2E connectivity 

challenges in ML adoption with 5G. It is based on dense and 

heterogeneous user applications that create decision-making 

issues related to cell connection. The major issue arises in 

analyzing the mobile connections as several complicated 

networks and applications are taken into account. Thus, it 

can be said that several computational issues such as FD 

communication challenges, RAT selection challenges, 

Network slicing (NS) issues, and UDSC challenges are faced 

while implementing ML techniques for 5G networks.  

III. CONCLUSION 
As per the above-discussed facts, it can be concluded 

that Machine Learning (ML) adds excellent value to the 5G 

network in several ways. Machine Learning can predict 

variations in several Key Performance Indicators used and 

address computation issues in a MIMO 5G Network. 

Network anomalies can be detected and avoided for 

improving network performance.  
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